
MISRA C:2012
Technical Corrigendum 1
Technical clarification of 
MISRA C:2012
June 2017



First published June 2017 by HORIBA MIRA Limited
Watling Street
Nuneaton
Warwickshire
CV10 0TU
UK

www.misra.org.uk

© HORIBA MIRA Limited, 2017. 

“MISRA”, “MISRA C” and the triangle logo are registered trademarks owned by HORIBA MIRA Ltd, held
on behalf of the MISRA Consortium. Other product or brand names are trademarks or registered
trademarks of their respective holders and no endorsement or recommendation of these products
by MISRA is implied. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted  in  any form or  by  any  means,  electronic,  mechanical  or  photocopying,  recording  or
otherwise without the prior written permission of the Publisher.

ISBN 978-1-906400-17-0 PDF 

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library 



MISRA C:2012
Technical Corrigendum 1
Technical clarification of 
MISRA C:2012
June 2017

i



MISRA Mission Statement

We  provide  world-leading  best  practice  guidelines  for  the  safe  and  secure  application  of  both
embedded control systems and standalone software.

MISRA  is  a  collaboration  between  manufacturers,  component  suppliers  and  engineering
consultancies  which  seeks  to  promote  best  practice  in  developing  safety-  and  security-related
electronic  systems  and  other  software-intensive  applications.  To  this  end  MISRA  publishes
documents that provide accessible information for engineers and management, and holds events to
permit the exchange of experiences between practitioners.

Disclaimer

Adherence to the requirements of this document does not in itself  ensure error-free robust software or
guarantee portability and re-use.

Compliance  with  the requirements  of  this  document,  or  any  other  standard,  does  not  of  itself  confer
immunity from legal obligations.

ii



Foreword

Since the publication of MISRA C:2012 [1] and its adoption by industry and the wider C community, a
number of  issues  have arisen,  both from discussions within the MISRA C Working Group and in
response to feedback via the MISRA C Forum [2].

This document provides clarification on these issues, and should be read in conjunction with the
original MISRA C:2012 document.

Andrew Banks FBCS CITP
Chairman, MISRA C Working Group 

iii



Contents

1 Clarification of directives 1

2 Clarification of rules 2

3 Clarification of appendices 13

4 References 15

iv



1 Clarification of directives

Dir 4.6

Issue

It is unclear whether a typedef is required to be used in place of “plain” char type. Exception 4 is not
relevant to the rule as “plain” char types are not required to be replaced by a typedef.

Correction

Add sentence at end of first paragraph of Amplification:

The numerical types of char are signed char and unsigned char. These Guidelines do not treat “plain”
char as a numerical type (see section 8.10.2 on essentially character types).

Remove Exception 4:

4. For function “main” a char may be used rather than the typedefs for the input parameter argv.

Dir 4.8

Issue

The interpretation of  this  directive is unclear when there is more than one pointer to the same
structure or union type.

Correction

Add sentence at end of Amplification:

This directive only applies if all the pointers to a particular structure or union in a translation unit are
never dereferenced.

Dir 4.11

Issue

A correction is required to the C99 references.

Correction

Replace:

Implementation J.3(8-11)

with:

Implementation J.3.12(8-11)

1



2 Clarification of rules

Rule 2.2

Issue

It is unclear whether the term dead code includes initialization.

Correction

Add extra Note:

Note: Initialization is not the same as an assignment operation and is therefore not a candidate for
dead code.

Rule 2.5

Issue

It is unclear whether undefining a macro is considered to be a use of the macro.

Correction

Add an Amplification:

#undef of a macro is considered to be a use of a macro.

Rule 5.9

Issue

It is unclear whether the Amplification only applies to identifiers that define objects or functions with
internal linkage.

Correction

Replace:

The identifier should be unique…

with

An identifier name that defines objects or functions with internal linkage should be unique….

Rule 8.4

Issue

An exception is required for function main.

Correction

Add Exception.

The function main need not have a separate declaration.2



Rule 10.1

Issue

The list of prohibited operators does not include objects with pointer type.

Correction

Add following paragraph after paragraph starting “Under this rule”:

In addition, the rule prohibits the use of logical operators ( ! && || ) on an operand with pointer type.

Rule 10.1

Issue

A correction is required to the C99 references.

Correction

Replace:

Implementation J3.4(2, 5), J3.5(5), J3.9(6)

with:

Implementation J.3.4(2, 5), J.3.5(5), J.3.9(6)

Rule 10.3

Issue

An exception is required to cover switch statements' case labels.

Correction

Add Exception 3.

A switch statement's  case label that is a non-negative  integer constant expression of  essentially signed
type is permitted when the controlling expression is of essentially unsigned type and the value can be
represented in that type.

Rule 10.3

Issue

A correction is required to the C99 references.

Correction

Replace:

Implementation 3.5(4)

with:

Implementation J.3.5(4)

Se
ct

io
n 

2:
 C

la
rifi

ca
tio

n 
of

 r
ul

es

3



Rule 10.3

Issue

A correction is required to Exception 1.

Correction

Replace:

A non-negative  integer constant expression of  essentially signed type may be assigned to an object of
essentially unsigned type if its value can be represented in that type.

with:

An essentially signed integer constant expression, with a rank no greater than signed int, may be 
assigned to an object of essentially unsigned type if its value can be represented in that type.

Rule 10.4

Issue

A correction is required to show which rule an example violates.

Correction

Remove example from “non-compliant” section:

u8a += cha /* unsigned and char */

Add new paragraph after “cha += u8a” example:

The following is compliant by exception 1, but violates Rule 10.3

u8a += cha /* unsigned and char */

Rule 10.4

Issue

A correction is required to the C99 references.

Correction

Replace:

Implementation 3.6(4)

with:

Implementation J.3.6(4)

Section 2: Clarification of rules

4



Rule 10.5

Issue

It is unclear whether the exception applies to expressions with essentially enum type or to just those
with an essentially signed or essentially unsigned type.

Correction

Replace:

An integer constant expression with the value 0 or 1 of either signedness …

with:

An integer constant expression with the value 0 or 1 and either essentially signed or essentially unsigned
type …

Section 8.10.3 

Issue

The list of composite operators is not complete.

Correction

Replace:

Bitwise (&, |, ^)

with:

Bitwise (&, |, ^, ~)

Replace:

● The result of a compound assignment operator is not a composite expression;

with:

● The results of the following operators are not composite expressions:

▬ Assignment and compound assignment

▬ Postfix and prefix increment and decrement

▬ Cast

Add between 2nd and 3rd items in the “Note” list:

● A unary + or unary - expression whose operand is a composite expression is also a composite
expression.

Se
ct

io
n 

2:
 C

la
rifi

ca
tio

n 
of

 r
ul

es

5



Rule 10.8

Issue

The wording in the rationale is not correct.

Correction

Change the Rationale line:

On a 16-bit machine the addition will  be performed in 16-bits with the result wrapping modulo-2
before it is cast to 32-bits.

to:

On a 16-bit machine the addition will be performed in 16-bits with the result wrapping modulo-2^16
before it is cast to 32-bits.

Rule 11.2

Issue

It is unclear whether this rule applies to the unqualified types that are pointed to by the pointers.

Correction

Add a final paragraph to the Amplification:

This rule applies to the unqualified types that are pointed to by the pointers.

Rule 11.4

Issue

It  is  unclear whether  this  rule only applies to object pointers.  Note: Other rules cover the other
pointer types.

Correction

Change the Amplification lines:

A pointer should not be converted into an integer. An integer should not be converted into a pointer.

to:

An object pointer should not be converted into an integer. An integer should not be converted into
an object pointer.

Section 2: Clarification of rules

6



Rule 11.9

Issue

An exception is required to permit  the use of  {  0 }  to initialize aggregates or unions containing
pointers.

Correction

Add Exception:

The initializer { 0 } may be used to initialize an aggregate or union type containing pointers.

Rule 11.9

Issue

The example comment needs improvement.

Correction

Change:

/* Could also be stdio.h, stdlib.h and others */
#include <stddef.h>

to:

#include <stddef.h>  /* To obtain macro NULL */
/* Could also be stdio.h, stdlib.h and others in hosted environments */

Rule 12.4

Issue

It is unclear whether this rule applies just to expressions that do not violate the constraints of a
constant expression or whether it also applies to expressions which exhibit undefined behaviour. 

The example with “const uint16_t c” was included to reinforce this point. 

Correction

Change the Amplification line:

This rule applies to expressions that satisfy the constraints for a constant expression, whether or not
they appear in a context that requires a constant expression.

to:

This rule applies to expressions that satisfy the  constraints and semantics for a  constant expression,
whether or not they appear in a context that requires a constant expression.

Se
ct

io
n 

2:
 C

la
rifi

ca
tio

n 
of

 r
ul

es

7



Change the Example line:

This rule does not apply to the expression c + 1 in the following compliant example as it accesses
an object and therefore does not satisfy the constraints for a constant expression.

to:

This rule does not apply to the expression c + 1 in the following compliant example as it accesses
an object and therefore does not satisfy the semantics for a constant expression.

Rule 13.2

Issue

There is an incorrect space between the macro name and the “(” in the definition of COPY_ELEMENT.

Correction

Change the Example line:

#define COPY_ELEMENT ( index ) ( a[( index )] = b[( index )] )

to:

#define COPY_ELEMENT( index ) ( a[( index )] = b[( index )] )

Rule 14.2

Issue

The meaning of the phrase “assign a value to the loop counter” is unclear. In particular, confirmation
is required that the following is compliant.

int index;
for ( set_val(&index) ;  index < 10 ; index++) /* set_val assigns to index */

Correction

Change the second bullet point from:

● Shall assign a value to the loop counter, or

to:

● Shall be an expression whose only persistent side effect is to set the value of the loop counter,
or

Section 2: Clarification of rules

8



Rule 15.6

Issue

The if .. else if example is not compliant with rule 15.7.

Correction

Add a comment to the final else statement

else
{
  ;   /* no action */
}

Rule 15.7

Issue

It is unclear whether all function calls are to be considered as having a side effect for the purposes of
this rule.

Correction

Add a second paragraph to the Amplification

A function call is considered to be a side effect for the purposes of this rule.

Rule 16.1

Issue

The font is incorrect on “opt” in C90 syntax of switch-clause.

Correction

Change:

C90: { declaration-listopt   statement-listopt   break; }

to:

C90: { declaration-listopt   statement-listopt   break; }

Se
ct

io
n 

2:
 C

la
rifi

ca
tio

n 
of

 r
ul

es

9



Rule 19.1

Issue

The assignment “a = b” is marked as compliant due to exception 1, but rule 19.1 does not apply since
the objects are not overlapping.

Correction

Remove reference to “b” from the example. Replace:

} a = { 0 }, b = { 1 };

a.j = a.i;     /* Non-compliant */
a = b;         /* Compliant - exception 1 */

with:

} a = { 0 };

a.j = a.i;    /* Non-compliant */

Rule 21.1

Issue

There is a missing cross-reference to rule 20.5.

Correction

Add a cross-reference to 20.5 to the “See Also” section

Rule 21.2

Issue

The headline of this rule is inconsistent with that of rule 21.1.

Correction

Change:

A reserved identifier or macro name shall not be declared

to:

A reserved identifier or reserved macro name shall not be declared

Section 2: Clarification of rules

10



Rule 21.2

Issue

The example _BUILTIN_sqrt is marked as non-compliant with this rule, but is actually non-compliant
with rule 21.1.

Correction

Change:

#define _BUILTIN_sqrt( x ) ( x )   /* Non-compliant  */

to:

static double _BUILTIN_sqrt ( double x )     /* Non-compliant */
{ 
   return x * x;
}

Rule 21.7

Issue

The wording of the headline is inconsistent with other rules.

Correction

Change headline:

The atof, atoi, atol and atoll functions of <stdlib.h> shall not be used

to:

The Standard Library functions atof, atoi, atol and atoll of <stdlib.h> shall not be used

Rule 21.8

Issue

The wording of the headline is inconsistent with other rules.

Correction

Change headline:

The library functions abort, exit, getenv and system of <stdlib.h> shall not be used

to:

The Standard Library functions abort, exit, getenv and system of <stdlib.h> shall not be used

Se
ct

io
n 

2:
 C

la
rifi

ca
tio

n 
of

 r
ul

es

11



Rule 21.9

Issue

The wording of the headline is inconsistent with other rules.

Correction

Change headline:

The library functions bsearch and qsort of <stdlib.h> shall not be used

to:

The Standard Library functions bsearch and qsort of <stdlib.h> shall not be used

Section 2: Clarification of rules

12



3 Clarification of appendices

Appendix D.3 

Issue

It is unclear in some contexts where the STLR and UTLR should be used.

Correction

Add after last paragraph:

Note: The STLR and UTLR of an integer constant expression is only applied to those operators listed in
D.7.

Appendix D.7

Issue

The parenthesis operator is missing from the list of operators in Appendix D.7.

Correction

Add:

Parenthesis ( ( ) )

The essential type of the result is the essential type of the operand.

Appendix G

Issue

The first entry for J.3.11 does not exist in the original C99 document. It should be retained as an
unnumbered item with the remaining items for J.3.11 being renumbered.

Correction

Renumber entries for J.3.11 from:

1, 2, 3, 4, 5, 6, 7, 9, 10, 11

to:

*, 1, 2, 3, 4, 5, 6, 8, 9, 10

13



Appendix J

Issue

It  is  unclear  whether  a  function is  considered to  have a  persistent  side  effect if  only  some paths
through the function cause a persistent side effect. 

Correction

Add to paragraph before example:

The determination of  whether a function has  persistent  side  effects takes no consideration of  the
possible values for parameters or other non-local objects.

Section 3: Clarification of appendices

14



4 References
[1] MISRA C:2012 Guidelines for the use of the C language in critical systems, ISBN 978-1-906400-10-

X, MIRA, March 2013 

[2] MISRA Web Forum at https://www.misra.org.uk/forum

15

https://www.misra.org.uk/forum

	1 Clarification of directives
	2 Clarification of rules
	3 Clarification of appendices
	4 References

